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Currently, no government agency has 
comprehensive information of Con-
centrated Animal Feeding Operations 

in the United States. This study helped fill 
that data gap by developing the first dataset 
of CAFOs in New Mexico. We identified 160 
CAFO facilities accross the state using an 
open-source machine learning algorithm.
Small family farms are rapidly disappearing 
in the wake of “factory farms” that specialize 
in producing one crop or animal on a massive 
scale. Regulatory agencies call these factory 
farms Concentrated Animal Feeding Opera-
tions [CAFOs]. CAFOs raise animals in con-
finement, usually at high densities, to produce 
meat, dairy, or eggs. While CAFOs have made 
U.S. agriculture more productive, there are 
serious environmental and health effects of 
concentrating livestock and animal waste in 
small areas. 

CAFOs can contaminate air quality and wa-
ter sources, which have direct effects on work-
ers’ and surrounding communities’ health. 
CAFOs have been connected to serious ground 
and surface water quality problems including 
nutrient build-up and contamination from 
pathogens, chemicals, or common agricultural 
substances. Studies have also connected CA-
FOs to air pollutants such as ammonia, hydro-
gen sulfide, methane, and particulate matter, 
all of which have associated human health 
risks. As a result, communities surrounding 
CAFOs are at risk of respiratory illnesses, de-
clining mental health, and high blood pressure, 
among other ailments. CAFOs pose an even 
greater health risk for agricultural employees 
who are exposed to pollutants and dangerous 
working conditions daily

Despite CAFO’s health and environmental 
impacts, little public information is available 
about the locations and characteristics of these 
facilities. Even at the federal level, no agency 
has comprehensive knowledge of the size, 
location, and number of CAFOs that exist in 
the United States.1  Data gaps remain at both 
the federal and state levels, in part because 
identifying and monitoring CAFOs is tradi-
tionally very labor intensive. Previous efforts 
employed teams to physically drive or fly over 
agricultural areas, or manually pore over mil-
lions of images to visually identify potential 
CAFOs. However, recent studies have pointed 
to machine learning as a methodology for effi-
ciently and accurately identifying CAFOs.2  

This study fills the current data gap by cre-
ating the first dataset of CAFOs in the Ameri-
can Southwest. We used open-source machine 
learning algorithms to identify and geolocate 
CAFOs in New Mexico. We applied a convolu-
tional neural network (CNN) architecture for 
image recognition to data from the USDA Na-
tional Agricultural Imagery Program (NAIP). 
We processed imagery covering the state at 1 m 
resolution and took a quasi-random stratified 
sample of images to create training and testing 
datasets. We then trained a CNN to identify 
CAFO components from image features and 
localized the positive-classified images to pin-
point the locations of unique CAFO facilities. 

Our effort identified 160 distinct cattle 
CAFO facilities across New Mexico, which 
accords with prior best-guess estimates by 
state-level regulators and local advocacy part-
ners. The model was 87.5% accurate, with 14 
false positives that were generally center-pivot 
irrigated fields, warehouses, highway intersec-
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tions, and airport facilities. We also cross-refer-
enced the CAFO locations with census data to 
understand the environmental justice impact 
of these facilities.  We found that communities 
with CAFOs are lower-income, have lower 
rates of high school graduation, and have high-
er exposure to PM 2.5 than the state average.

This study successfully developed a model 
to identify CAFOs in New Mexico which could 
have wide applicability for other semi-arid 
western states in which CAFOs go under-mon-
itored and underregulated. We aim to expand 
this project and close the CAFO data gap for 
the entire United States.

Figure 1. Our study located 160 concentrated cattle feeding operations in New Mexico. Each CAFO facili-
ty is indicated by a red dot, with the highest density of facilities around Clovis and Roswell.



What is a CAFO?
U.S. livestock farming has industrialized 

over the past 50 years. Financial pressure to 
be more productive and profitable has fu-
eled the rise of large corporately contracted 
farms across the poultry, dairy, beef, and pork 
sectors. Small family farms are rapidly disap-
pearing in the wake of “factory farms” that 
specialize in producing one crop or animal 
on a massive scale. These operations are more 
efficient because they typically confine a single 
species of livestock in a limited area such as a 
feedlot, barn, or fenced in pen.3  One of these 
facilities can raise as many as 2 million chick-
ens or 800,000 hogs at one time.4  As of 2020, 
there are an estimated 1.6 billion animals in 
25,000 factory farms across the U.S.5  

Regulatory agencies call these factory 
farms Concentrated Animal Feeding Op-
erations [CAFOs]. CAFOs raise animals in 
confinement, usually at high densities, to pro-
duce meat, dairy, or eggs.i  The EPA classifies 
CAFOs according to herd type and size, and 
the manner they discharge waste into the wa-
ter supply. The number of CAFOs in the U.S. 
increased by about 230 percent between 1982 
and 2002.6  Current estimates put the number 
of CAFOs in the U.S. around 20,000, although 
advocacy organizations believe this could be 
an underestimate.7 

Environmental & Health Effects of 
CAFOs

While CAFOs have made U.S. agriculture more 
productive, there are serious environmental and health 
effects of concentrating livestock and animal waste in 
small areas. Most of these impacts come from the large 
amount of manure CAFOs produce. Depending on the 
type and number of animals in a CAFO, manure pro-
duction can range between 2,800 tons and 1.6 million 
tons a year.8  In addition to nutrients like nitrogen and 

i	 CAFOs are a subset of Animal Feeding Operations [AFOs]. AFOs are agricultural operations where animals are kept and 
raised in confined situations. The EPA considers an agricultural operation an AFO if it confines animals for 45 or more days and does 
not have vegetation growth over the facility.

phosphorous, manure can also contain human patho-
gens, growth hormones, antibiotics, heavy metals, and 
chemicals used in agricultural operations.9  Because 
there are no treatment requirements for animal waste, 
most CAFO manure is redistributed on, or discharged 
from, the facility’s land in solid, slurry, or liquid form.10  
The USDA found a clear association between farm 
size and the concentration of manure, where large 
operations are more likely to apply manure to their 

Introduction

CAFOs are ubiquitous across the U.S. These facilities have many 
environmental and health impacts as a result of their intense 
manure production. Above, a tractor is seen spreading manure.

3



facilities more intensively.11  While CAFOs 
are regulated on the amount and manner in 
which they can store and discharge manure, 
runoff, improper storage, and accidental 
releases continue to impact the surrounding 
environment.12  As the following sections 
discuss, CAFOs can contaminate air quality 
and water sources, which have direct effects 
on workers’ and surrounding communities’ 
health.

Water Pollution
Runoff from CAFOs is associated with 

groundwater and surface water contami-
nation. As CAFOs apply more manure to 
their facilities, contaminants are more likely 
to leach into surrounding waterways. As a 
result, the agricultural sector is the leading 
contributor of pollutants to lakes, rivers, and 
reservoirs in the U.S.13  The EPA found that 
states with high concentrations of CAFOs experience 
on average 20-30 serious water quality problems a 
year from manure mismanagement.14  These “serious 
water quality problems” include nutrient build-up and 
contamination from pathogens, chemicals, or common 
agricultural substances.

CAFO runoff can contaminate surrounding surface 
waters with nutrient build-ups. High levels of nitrates 
and phosphates cause algal blooms that decimate 
aquatic ecosystems. These manure discharges have 
been linked to fish kills throughout the U.S.15

Furthermore, CAFO runoff can eventually leach 
into groundwater, polluting it with nitrates, chemicals, 
and pathogens. Groundwater contamination is even 
more difficult to trace and treat than surface water 
pollution because it is invisible. Undetected contam-
ination means that the estimated 150 pathogens in 
animal manure, most commonly E. coli, Salmonella 
and Giardia, can spread and infect humans.16 

Many Americans rely on groundwater as their 
water supply therefore, any contamination poses a 
serious health risk. One study estimated that millions 
of Americans living in or near farming communities 
have drinking water that is contaminated by danger-
ous amounts of nitrates and coliform bacteria from 
manure.17  Drinking contaminated water can lead 
to diarrhea, dehydration, and even death for immu-
no-compromised populations.

Air Pollution
Manure from agricultural operations also emits gas-
es and particulate matter that harm surrounding air 
quality, especially when concentrated at high levels. 
Studies have connected CAFOs to pollutants such as 
ammonia, hydrogen sulfide, methane, and particulate 
matter, all of which have associated human health 
risks.18  Communities surrounding CAFOs are at risk 
of respiratory illnesses, declining mental health, and 
high blood pressure, among other ailments.
Several studies have found that CAFOs increase rates 
of asthma in surrounding communities, because of 
their toxic hydrogen sulfide, ammonia, and particulate 
matter emissions. CAFOs account for an estimated 
64% to 86% of total global anthropogenic ammonia 
emissions alone.19  Long-term exposure to these sub-
stances can cause asthma to develop into more serious 
ailments such as heart and lung disease.20 

In addition to declining bodily health, odors 
from CAFOs also have deleterious impacts on mental 
health. Odor plumes from CAFOs are often over-
powering and expansive, covering a large radius that 
extends far beyond the single CAFO facility. This 
pervasive stench causes significant lifestyle changes for 
residents that can lead to anxiety, depression, and even 
PTSD.21  For example, one neighbor of a CAFO in New 
Mexico described how residents can no longer spend 
time outside their homes because “there are too many 
flies.”22 

Runoff from CAFOs can have disatrous effects on surrounding 
areas’ water quality, including eutrophication and contamination 
from pathogens.
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Worker Impacts
CAFOs pose an even greater health risk for agri-

cultural employees who are exposed to pollutants and 
dangerous working conditions daily. The confined na-
ture of livestock farming “exposes workers to manure 
dust, bacteria, and other particulates that can damage 
respiratory passages and lead to airway obstruction.”23  
This was evident in the COVID-19 pandemic, when 
agricultural workers were at greater risk of contracting 
coronavirus due to cramped, unventilated facilities.24  
Additionally, agricultural workers are more likely to be 
injured because of interactions with livestock. Dairy 
farming has the second-highest prevalence of injuries 
among all US agriculture groups, most of which hap-
pen during milking activities.25  One study found that 
76% of dairy workers surveyed had at least one body 
part affected by an occupationally related musculoskel-
etal injury.26 

Furthermore, the worker demographics of CA-
FOs mean immigrant workers disproportionately 
bear these health risks. Immigrant laborers comprise 
most dairy workers (51%) in the U.S., and “dairies that 
employ immigrant labor produce 79% of the U.S. milk 
supply.”27  However, estimating the exact proportion of 
immigrant agricultural laborers in the U.S. is difficult 
because data from the U.S. Department of Agriculture 
likely does not include a complete count of all mi-

ii	 This is the case for all but four states that do not have NPDES delegation authority, one of which is New Mexico. The nearest 
regional EPA office handles NPDES permitting for these states.

grant, undocumented, or season-
al workers.28  In the absence of 
accurate data, the health impacts 
of CAFOs on immigrant workers 
remain underestimated.

Regulating CAFOs
As the number of CAFOs 

grew in the 1970s and 80s, leg-
islators recognized the need 
to regulate them as a source of 
pollution. In 1972, the Clean 
Water Act delegated power to the 
EPA to regulate CAFOs through 
the National Pollution Discharge 
Elimination System [NPDES]. 
NPDES sets effluent limitation 
guidelines and standards for all 

point sources of pollution. While 
the EPA formally regulates CAFOs, 
it generally delegates its authority to 

state and local environmental agencies that administer 
NPDES permits.  Under this system, a CAFO would 
apply for an NPDES permit through their appropriate 
state agency.ii These permits limit what and how much 
a facility can discharge and set stipulations for moni-
toring and enforcement.

However, this regulatory system has several flaws. 
First, NPDES exempts any CAFO that is not “actively” 
discharging waste. Rather than requiring all CAFOs to 
be permitted prior to discharging, the burden of proof 
is on regulatory agencies to demonstrate a CAFO is 
discharging and requires a permit. This rarely occurs 
because federal, state, and local agencies do not have 
the resources to proactively monitor and enforce 
facilities for violations. Despite being the watchdog for 
CAFO pollution, the EPA inspected a mere 0.6% of 
all CAFOs in 2017.29  In the absence of strong federal 
oversight, state regulatory agencies have little impetus 
or resources to conduct their own monitoring activi-
ties. Inconsistent enforcement means CAFOs can dis-
charge toxic pollutants with few, if any, consequences.

New Mexico is one of the nation’s softest regulatory 
environments for CAFOs. It is one of only four states 
that does not have delegation authority from the EPA 
to write NPDES permits. Instead, New Mexico relies 
on the regional EPA office to issue permits, which 

CAFO workers face a variety of workplace hazards including harmful pollut-
ants and bodily injury.
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results in permits that are not specific to local contexts 
and more difficult to enforce. After an intense push 
from advocacy organizations, New Mexico enacted 
“the Dairy Rule” in 2015 to fill this regulatory gap 
and protect groundwater. Under the rule, all actively 
discharging dairies are required to apply for a permit 
through the NM Environment Department, monitor 
their water quality, and install liners in all waste la-
goons.30  While the regulation was a landmark agree-
ment between the dairy industry and environmental 
advocates, the NM State Legislature has yet to assess 
the Dairy Rule’s efficacy in protecting groundwater.

Furthermore, despite CAFO’s health and environ-
mental impacts, little public information is available 
about these facilities. In 2008, the Government Ac-
countability Office found that the “EPA does not have 
comprehensive, accurate information on the number 
of permitted CAFOs nationwide. As a result, EPA does 
not have the information it needs to effectively regu-
late these CAFOs.”31  The EPA has made some strides 
in collecting information on CAFOs, but data gaps 
remain at both the federal and state levels. Advocacy 
organizations’ efforts to unearth CAFO data have had 
limited success. A 2019 study from the Natural Re-
sources Defense Council found data on 7,595 CAFOs 
in 40 states, leaving more than half of the 17,000+ 
CAFOs the EPA estimated to exist unaccounted for 
in the agency’s own data.32  New Mexico regulatory 
agencies are particularly opaque with their state-level 
CAFO data; the state scored low across all six of Nat-
ural Resources Defense Council’s measures of CAFO 
regulatory transparency.33 
	
CAFOs in New Mexico: An Environmental 
Justice Issue

New Mexico is home to some of the biggest farms 
in America. Most of New Mexico’s CAFOs are dairy 
farms with herds averaging around 2,300 cows per 
farm, which is the largest average herd size in the U.S.34  
These “mega” farms make New Mexico the ninth-larg-
est milk-producing and fourth-largest cheese produc-
ing state in the U.S. with approximately 329,000 dairy 
cows.35  Dairy is the state’s largest agricultural sector 
and a major contributor to New Mexico’s economy. The 
dairy industry contributes an estimated $105 billion 
dollars annually to New Mexico’s economy, accounting 
for over 4% of the state’s total GDP.36 

The economic benefits from New Mexico’s concen-
trated dairy industry are not without environmental 

and social costs. Most of the state’s dairy farms are 
concentrated along a stretch of I-10 in southern New 
Mexico, which has been termed “Dairy Row” due to its 
overpowering odor.37  These farms also pose a serious 
threat to the surrounding watershed. A 2009 analysis 
from the New Mexico Environment Department found 
that two-thirds of the state’s dairies were contaminat-
ing groundwater.38  Because 78% of New Mexicans rely 
on groundwater for their drinking water, any contami-
nation has dire implications on human health.39 

Furthermore, people of color and low income are 
disproportionately exposed to the negative health and 
environmental effects of CAFOs, making New Mexico’s 
dairies an environmental justice issue. CAFOs tend 
to be located in areas where residents do not have the 
political power to resist the siting or expansion of such 
agricultural operations.40  A study of pork CAFOs in 
North Carolina found “nine times more CAFOs in 
areas where there was more poverty and higher per-
centages of nonwhite people even after adjusting for 
population density as a measure of rural location and 
cheaper land.”41  New Mexico is no exception. Antho-
ny, a town located along Dairy Row, is more than 98 
percent Hispanic or Latino, and nearly half of its res-
idents are living in poverty.42  Many of these residents 
also work in the dairy industry, which means they’re 
constantly exposed to pollutants. Mapping the health 
and environmental impact of CAFOs is a key compo-
nent of understanding environmental justice in New 
Mexico because of these exposure risks.

What Will a CAFO Map Accomplish?
Accurate CAFO location data is crucial for reg-

ulators and the public. Regulators need to be able to 
identify CAFOs for proper permitting, monitoring, 
and enforcement. State agencies lack the resources 
and technical expertise to develop a machine-learning 
methodology, so this dataset is valuable with many po-
tential applications such as identifying unpermitted or 
illegal CAFOs and geographically targeting regulatory 
enforcement resources.

For residents, knowing the locations of CAFOs 
will strengthen advocacy efforts and elucidate wheth-
er communities of color and low income are dispro-
portionately exposed to pollutants. This dataset will 
provide advocates with an objective, scientifically 
supported tool to argue for enhanced environmental 
protection in their communities.
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Methodology

From an analytical perspective, identifying CAFO 
facilities amid all of the other possible land surface 
features in a state is something of a needle-in-the-hay-
stack challenge. Previously, mapping CAFOs required 
employing teams to physically drive or fly over agricul-
tural areas or to manually pore over millions of images 
to visually identify potential CAFOs. Both approaches 
are time-intensive: on the order of three to five years 
for a full statewide census.43  In the former case, the 
approach is not feasible over large domains, including 
many states in the western U.S.

One characteristic of CAFO operations makes 
them readily identifiable in aerial imagery: they tend 
to exhibit distinctive, relatively consistent geometrical 
features and coloration patterns when viewed from 
above. This characteristic, along with the availability of 
spatially extensive, high-resolution aerial data, makes 
the analytical problem of identifying CAFOs a promis-
ing application case for deep learning--based computer 
vision techniques. 

We derived the locations of cattle CAFOs in New 
Mexico by applying a convolutional neural network 
(CNN) architecture for image recognition to data from 
the USDA National Agricultural Imagery Program 
(NAIP). We processed imagery covering the state of 
New Mexico at 1 m resolution and took a quasi-ran-
dom stratified sample of images to create training and 
testing datasets. We then trained a CNN to identify 
CAFO components from image features and localized 
the positive-classified images to pinpoint the loca-
tions of unique CAFO facilities. Our methods relied 
substantially on the analytical architecture reported 
by Handan-Nader and Ho in 201944 , although we 
introduced several significant modifications to their 
methods in our data pipeline, modeling strategies, and 
image-localization procedures. The analysis yielded 
high classification accuracy on both repeated strat-
ified k-fold testing, and on a 20% reserved test set 
(N=9236).

Data
Data source

NAIP produces high-resolution aerial imagery 
of the land surface in the contiguous U.S. acquired 

during the growing season. The program operates 
annually, imaging a third of U.S. states each year; a 
new dataset is produced for any given state, therefore, 
every three years. The data portray spectral reflectance 
observations from the Earth surface in four bands 
(Red, Green, Blue, and Near-Infrared). The images 
are acquired at a 1 m ground sample distance with a 
horizontal accuracy tolerance of 6 m to ground control 
points. The data are orthorectified using the National 
Elevation Dataset at 1 m resolution and color balanced 
by normalizing each image’s radiometric range to that 
of adjacent images.

While the USDA Natural Resource Conservation 
Service makes the data available to the public, acquir-
ing images at the scale of the state is infeasible with 
current federal image download servers and interfaces. 
To improve scalable access to such nominally public-
ly available data, Amazon Web Services (AWS) has 
developed a Registry of Open Data45, a set of cloud-na-
tive open data repositories that third parties, including 
researchers and analysts, can access and query through 
AWS-based APIs. At the time of our analysis, the reg-
istry hosted the full set of NAIP imagery covering the 
continental U.S from 2012 to 2018, and was managed 
by the private GIS-software firm Esri. 

Using the Python libraries boto3 and botocore, 
which comprise the Python wrappers for the AWS 
Software Development Kit (SDK), we sourced NAIP 
imagery acquired in 2018 over the entire state of New 
Mexico from the Registry of Open Data’s naip-analyt-
ic bucket on AWS S3. The data were stored on S3 as 
digital ortho quarter quad tiles (DOQQs), each cov-
ering a 3.75 x 3.75 minute quarter quadrangle, with a 
300 m buffer on all sides. These were stored on AWS as 
cloud-optimized GeoTiffs and compressed using the 
Lerc1 lossless compression algorithm.

Once accessed and decompressed the dataset com-
prised 8024 images. These provided complete coverage 
of the state with 450 m overlap between adjacent im-
ages, as Fig. 2 details. Along borders, images included 
data for bordering states up to the maximum image 
dimensions. All images were projected in the UTM 
coordinate reference system (CRS), under which New 
Mexico is divided into two zones, 12 and 13. Approxi-
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mately 75 percent of the images were in UTM Zone 13, 
and the remainder in Zone 12. To maintain fidelity in 
on-the-ground distance measurements, we preserved 
the images in their native CRS and developed code to 
accommodate multiple zones. 

The native resolution of the images was either 
60cm or 1 m, and they were of approximately equal 
dimension in pixels: mean width 10255 pixels (σ=197), 
mean height 12207 pixels (σ=83). For those images at 1 
m resolution, the surface distance depicted was equiv-
alent to the pixel dimension. For those at 0.6 m reso-
lution, they represented on average 6153 m (σ=118) in 
the x-dimension by 7324 m in the y-dimension (σ=50). 
Each image was approximately 550 MB in size, for a 
total data burden of approximately 4.4 TB. 

Our neural network architecture required input 
imagery with 299x299 pixel dimensions. Conveniently, 
these dimensions produced an appropriate scale for 
detecting whole CAFO facilities and the constituent el-
ements of larger facilities when the source images were 

at 1 m resolution. We therefore upscaled 0.6 m images 
to 1 m to achieve a consistent spatial resolution across 
the dataset. The small-scale input requirements, how-
ever, required us to further tile the NAIP images. We 
used the API from Descartes Labs46, a private geospa-
tial analytics firm, to create a micro-scale tile grid over 
the state. The grid included ~5.8 million tiles, each 
259x259 m with a 20 m buffer on each side, for a total 
dimension of 299x299 m. Adjacent tiles overlapped 40 
m. As with the NAIP imagery, the tiles were projected 
into a zonal UTM CRS, with Zone 12 and Zone 13 tiles 
rendered separately. On average, ~730 tiles intersected 
each NAIP image. The rationale for using a static grid, 
rather than tiling the images all at once, or building a 
tiling step into the modeling pipeline, has to do with 
our data and modeling architecture, as we describe 
in the next section. This architecture required each 
micro-image to have a permanent identifier, so that 
we could track it through training and testing, where 
applicable, and through final classification.

Data pipeline
As the foregoing paragraph hints, one 

novel contribution of this project was the 
development of a data pipeline that relies 
almost exclusively on calls to a public data 
repository on AWS S3 servers, without 
our needing to maintain a separate, in-
dependent data store either locally or in 
the cloud. Such an approach has several 
advantages. For one, it saves costs---on the 
order of hundreds of dollars per month for 
a project centered on one large U.S. state. 
Increasing the scale of the project, say, 
to cover multiple states or the entire U.S. 
would entail less than linear cost increas-
es, incurred primarily in the scaling up of 
computing power, with minimal growth 
in data storage costs. As long as the public 
repository remains available, this approach 
offers a flexible and rapidly scalable frame-
work for ingesting new remote sensing data 
and performing analyses using different 
kinds of modeling tools or evaluating dif-
ferent types of land-surface features. 

The essence of this approach depended 
on a relational database that connected the 
tile grid to the images in the S3 store and 
that allowed us to quickly read image data 

Figure 2. Boundaries of NAIP image tiles overlying New Mexico in 
the AWS Registry of Open Data naip-analytic bucket. Each red-out-
lined polygon indicates the extent of one image in the registry. Tiles 
overlap by 450 m.
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from S3 and then temporarily store both data 
and geospatial metadata in memory while we 
performed manipulations and classification 
operations. 

Once we had identified the relevant images 
in the S3 store and generated the micro-scale 
grid, we executed the remainder of the analysis 
in a high-performance Linux computing envi-
ronment on the Cloudera Data Platform, pro-
vided to us through the Cloudera Foundation 
(now McGovern Foundation) Data4Change 
Accelerator Program. The platform simplified 
many of the data-engineering and environ-
ment-management requirements that would 
have otherwise required manual configuration. 
The computing environment sat in a virtual 
private server based on an AWS P3 Elastic 
Compute instance with 64 vCPUs, 488 GB 
memory and 8 GPUs, 128 GB GPU memory. 

Our first step was to run a geospatial 
overlay procedure using the Python library 
geopandas. This operation yielded a dataframe 
that related each micro-tile to any of the S3 
images that it intersected (Fig. 3). We stored 
these relationships along with the unique iden-
tifier of each tile (uuid), the bounding coordinates 
of the tiles and the larger images, the images’ URL 
handles on S3, and the images’ source CRS in a single 
table in a Spark database. The computational time at 
this step was somewhat intensive: running in series 
with an r-tree spatial indexing method on all cores in 
the high-performance environment took approximate-
ly three hours.

In addition to the table of image-tile associations, 
we created a master table to store the uuids of each tile, 
as well as tables to store metadata attributes created 
during manual image tagging, assignments for manual 
image tagging, credentials for users of the application 
we developed for manual tagging, model parameters, 
model performance metrics, and model classification 
decisions (Table 1).
Table A1. Database schema is available in the Appendix.

Training set development
The next step was to create an image set for mod-

el training and testing. In Python, we developed a 
program that could download NAIP image data for 
any given tile, and we deployed the program, first, to 

generate the training/testing set using a quasi-stratified 
sampling procedure. Based on prior documentation 
efforts by Project Counterglow47  we knew the coordi-
nate locations of 56 confirmed or likely CAFO facil-
ities in the state. At each of these points, we queried 
the NAIP imagery and downloaded imagery for the 
tile containing the point and its 8 adjacent tiles. Then, 
we used Google Places to identify the coordinates of 
land-surface features that could be easily confused for 
CAFOs, based on their surface expressions and nearby 
land cover. The search terms included “store”, “camp-
ground”, “RV park”, “airport”, “warehouse”, “cemetery”, 
and “shopping mall”, among others. For each of these 
coordinate points, we again downloaded the tile con-
taining the point and the 8 adjacent tiles. Finally, we 
took a random sample of 20000 image tiles that had 
not been sampled in either of the prior procedures and 
downloaded their corresponding image data. Con-
catenating these three sampling sets yielded a total of 
24998 images. 

Using the R programming language and RShiny, 
an API for developing interactive web applications, we 
developed an application for manually labeling images 

Figure 3. One NAIP image with micro-scale grid tiles overlaid.
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in the training/testing set. The application called on the 
database and the sampled images to sequentially serve 
randomly selected images from the training-testing set, 
which human interpreters could evaluate. 

We hired and trained two image coders to use the 
app to tag images. As an image was served, the coders 
inspected the image and compared it against Goo-
gle Maps to determine whether the image depicted a 
CAFO facility. They registered their decision in the 
app interface, indicating whether the image depicted 
a “CAFO” or “non-CAFO,” along with information, 
in the former case, about the likely animal operation 
type (cattle, swine, poultry, other), the proportion of 
the facility depicted in the image, the proportion of the 
image covered by the facility, and qualitative com-
ments. A stratified random subsample of images was 
served to both coders, such that 10 percent of the total 
training-testing image set was double-coded, enabling 
us to evaluate cross-coder decision reliability. The 
coders met weekly with the research team to review 
the double-coded decisions and to resolve any classifi-
cation conflicts and to make a final determination for 
any images with an “unsure” tag. Inter-coder reliability 
was high (92.5% agreement in the first round of con-

flict-resolution and improving to 97.0% in the final 
round). 

The coders evaluated the full set of 24998 imag-
es. On inspection, approximately 4200 of the images 
(16%) were either duplicates or were missing substan-
tial data (i.e., the images had 0 values for more than 
25% of pixels in one or more bands). In most cases, the 
missing pixels were the result of sampling at the edge 
of a NAIP image. We removed the problematic sam-
ples and concluded that their proportion was not large 
enough to justify resampling and retagging; however, 
we modified the image-tiling code to avoid this prob-
lem in subsequent steps. We downloaded and stored 
the tagged image set temporarily in a private S3 bucket 
until model training and testing were complete. 

In total, the coders evaluated 24998 images. After 
the initial cleaning to remove the problematic samples, 
the final set included 20760 images, of which 740 sub-
stantially depicted CAFOs and 20020 did not.

Modeling
Big-picture, we used a deep-learning image pro-

cessing procedure to address our classification prob-

Table 1. Metadata fields populated during manual image tagging.
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lem. Specifically, we applied transfer learning to retrain 
the last layer of a convolutional neural network (CNN) 
to differentiate CAFO and non-CAFO images. We 
initially anticipated that we would need to develop 
multi-class models or altogether separate models for 
different types of animal operations (e.g., cattle, swine, 
poultry). However, our sampling procedure for the 
training-testing set yielded only a handful of images 
depicting non-cattle CAFO operations. The sample siz-
es for these other facility types were therefore too small 
for multi-class or multi-model approaches. Based on 
conversations with local environmental organization 
partners, moreover, it appears that cattle operations are 
by far the dominant CAFO type in New Mexico and 
the highest priority for monitoring. Accordingly, we 
trained a single CNN to obtain class probability scores 
for a binary classification problem, differentiating only 
between CAFOs and non-CAFOs.

Using subsets of the training-testing dataset, we 
ran pilot tests exploiting two convolutional neural 
networks (CNNs): Inception V3 and ResNet18. The 
CNNs were previously trained on larger datasets, such 
as ImageNet, which comprises millions of images. We 
accessed pretrained versions of the models through 
the *PyTorch* framework. In both cases, we preserved 
the pretrained weights and froze all but the final layer 
to minimize the computational expense of retraining 
the models. We then removed the final layer from the 
models. The final layer is typically a user-specified 
regression or classification function that takes inputs 
from prior layers to and fits them to a given function-
al shape using a user-specified loss function, in order 
to make a probabilistic decision. Here, we dropped 
this layer and defined a separate logistic function, 
which took in pooled features extracted from the 
second-to-final layer of the CNN and fit a sigmoid 
curve using the pooled values and their associated 
class labels over a maximum of 2000 iterations. This 
approach afforded two advantages: first, it dispensed 
with forward-feeding and back-propagation steps in 
a fully-connected CNN layer, which were overkill for 
our classification problem. This saved milliseconds of 
computational time per image with negligible loss in 
classification accuracy (<-0.001), which amounted to 
hours of savings when the model was applied over the 
full image set; second, it gave us flexibility to find and 
set an optimal classification threshold when we turned 
to applying the model to new data.

We applied several common techniques for re-

ducing overfit on the training set. These included: (A) 
oversampling to address class imbalance; (B) image 
augmentation and dropout; (C) k-fold cross-valida-
tion; and (D): lambda-optimization of the logistic 
classifier.

(A) Our data naturally have a large class imbalance 
(28:1 CAFO:non-CAFO in training, and likely two to 
three orders of magnitude higher in the full image set) 
To mitigate the negative impacts of this imbalance on 
classification performance, we oversampled CAFO-
tagged images in the training-testing sets. We used a 
simple random minority-class oversampler to balance 
the CAFO/non-CAFO proportion evenly. In prototype 
testing, the random oversampling technique outper-
formed both the Synthetic Minority Oversampling 
Technique (SMOTE) and Adaptive Synthetic Sampling 
(ADASYN), which synthesize new images from vari-
ous stochastic combinations of values from within the 
original dataset’s feature space. By contrast, the ran-
dom technique simply replicates existing images in the 
minority class. We randomly divided the oversampled 
data into two sets---80% for training, 20% for testing. 

(B) We also deployed image augmentations, in-
cluding random horizontal and vertical flips, z-score 
color enhancement, and random addition of Gaussian 
noise, to reduce overfit to the training data. And we 
allowed inputs to randomly drop out of the neural 
network during training, in essence reducing model 
complexity.

(C) With the 80% training set, we trained the mod-
el within a k-fold cross-validation framework, using 10 
folds and 3 repeats. This process began by making 10 
further random non-overlapping splits of the training 
set, each also in an 80%-20% proportion (1). For each 
split, the hybrid CNN-logistic model was trained using 
the new 80% subset (2) and then applied to predict 
class membership in the 20% subset (3). Accuracy sta-
tistics were generated for each split (4), then averaged 
across the ten splits (5). Steps 1-5 were then repeated 
three times with new random 10-fold splits to decrease 
the dependence of model performance on any given 
division of the data.

(D) At each fold, i, of the 10-fold cross validation 
procedure, we optimized the logistic function using a 
regularization parameter, λ. We specified a linear space 
of 10 possible λ values between 0.0001 and 0.01 and, at 
each λ, fit the logistic function using the training fea-
tures from fold. We then selected the λ that maximized 
mean classification accuracy when the model was 
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applied to the ith test set and used this to compute the 
accuracy statistics for fold i. This approach allowed us 
to achieve a minimally biased estimate of model skill.

We performed the steps described thus far on pro-
gressively larger subsets of the training data (N=500, 
N=1000, N=5000) using both ResNet18 and Inception 
V3. We generated five standard accuracy statistics at 
a 0.50 logistic classification threshold. Equations for 
these statistics is available in the Appendix. 

 Table 2 shows the performance of each model for 
each pilot size. We selected ResNet18 for final model-
ing based on its superior performance in the pilots. 

Once we had landed on a suitable modeling strate-
gy, we retrained the model using the k-fold procedure 
to estimate mean accuracy statistics. We then trained 
on the entire training set (N=29158 with oversam-
pling) and tested on the 20% reserved for final testing 
(N=7290 with oversampling). After using the CNN to 
extract features from the training and testing sets, we 
produced precision and recall curves and receiver-op-

erator characteristic curves, which report performance 
at all possible logistic-classification thresholds between 
0 and 1. We then fit the logistic classifier a further 100 
times for thresholds spanning the linear space between 
0.01 and 0.99, exclusive, and produced final perfor-
mance statistics at the threshold that optimized the F1 
score, which we report below.

This step was one of the more computationally in-
tensive in our workflow. Running against 60 CPUs and 
1 GPU took approximately 7 hours. 

Model deployment
The final step was to apply the top-performing 

model to the remainder of the data from New Mexico. 
Our ability to do this rested on the statistically rea-
sonable and methodologically standard assumption 
that training-testing performance can be generalized 
to overall performance, as long as one can assume 
that the training-testing set is representative of the full 
population of data. 

Figure 4. Examples of image augmentations applied in the data engineering pipeline, shown here applied to a 
single image. Any given image in the dataset randomly received exactly one of these augmentations or none before 
classification.
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We retrained the model on the full training-testing 
dataset (N=20670). We then used the image-tile asso-
ciation table and tiling procedure detailed in the “Data 
pipeline” section to ingest NAIP data from S3 and to 
extract image arrays from all tiles not used in training 
and testing. We deployed the CNN to extract features 
from each image and predicted the image’s class with 
the logistic classifier at the optimal threshold from the 
final round of testing. We ran this procedure in parallel 
with the pool function in the Python multiprocessing 
package, using batches of 12 NAIP images. Running 
against 60 CPU cores and one GPU required 2.8 days 
of computing time. The bulk of the computing demand 
came from tiling the NAIP images (~64%) and extract-
ing features with the CNN (~28%).

When an image was classified positive (i.e., had a 
sufficiently high likelihood of depicting at CAFO), we 
stored its uuid and the identifier of the NAIP image 
from which it was tiled in a new database table.

 
Deduplication and localization

From advocacy and regulatory perspectives, class 
predictions on image arrays are less interesting than 
the locations of CAFO facilities. We therefore needed 
to translate the raw modeling results into more useful 
information. We developed a method for consolidating 
image-level results into point coordinates centered on 
unique CAFO facilities. The approach involved two 
steps: localization and deduplication. 

To localize facilities, we took the centroid of the 
tile corresponding to each positive-classified image 
and stored its coordinates in its respective UTM zone 
CRS. We then computed the great curve distance from 
each point to all other points in the positive set. We 
considered any pair or cluster of points within 500 m 
of each other to comprise part of the same facility. For 
any such pair or cluster, we defined a convex-hull poly-
gon around the related points and stored the centroid 
coordinates, and then removed the points that had 
made up the cluster from the result set. We repeated 
this procedure until the minimum distance between 
all points exceeded 500 m. We translated the final set 
of points into the WGS84 geographic CRS and stored 
them in GeoJSON format. 

Reiteration
We manually validated the model-identified CAFO 

locations by referring back to the NAIP imagery and 
Google Maps imagery underlying the point coordi-

nates. On doing so, we identified an unexpectedly 
high false-positive rate and, in visually inspecting the 
surrounding areas near the model-identified points, a 
substantial number of CAFO facilities that the model 
had missed (reported in “Results”). We deduced that 
the unexpectedly weak performance of the model on 
new data likely resulted from a violation of the as-
sumption of representativeness. A high false-positive 
rate suggested that there was insufficient training data 
depicting land-surface features that the model could 
mistake for CAFO features, while a high false-negative 
rate suggested insufficient representation of the various 
shapes and forms that different kinds of CAFO facil-
ities can take. As a result, we undertook a second run 
of the entire modeling procedure with an expanded 
training dataset.

From the result set, we retrieved the uuids of 
tiled images containing each point, re-classified the 
false-positives and added the false negatives. We then 
took the 8 adjacent images surrounding each point 
and manually tagged those. We added the new images 
to the original training and testing set and their cor-
responding labels to the image label set. One further 
issue was that the original training set included some 
images in which a small proportion of the pixels actu-
ally depicted features attributable to CAFO facilities. 
The remainder of the pixels included fields, highways, 
and bare earth, which likely introduced confusion 
into training. We therefore filtered out any samples in 
which <10% of the image depicted a facility. The result-
ing dataset size was 24204: 1114 depicted CAFOs and 
23090 depicted non-CAFO land-cover types. We again 
oversampled the minority class and split the resulting 
dataset (N=46180) into 80%–20% training and testing 
sets. We then re-trained the model using the 10-fold 
cross-validation procedure with three repeats, gener-
ating accuracy metrics at each fold, and re-trained on 
the full training set (N=36944) to generate final accu-
racy statistics on the reserved 20% test set (N=9236). 
Finally, we trained the model on the full set of labeled 
images and applied the model to the remaining 4.5 
million images, following the steps detailed above.

Having retrieved the positive-classification results 
at the image level, we localized and deduplicated to 
derive a new set of points, which we added to the first 
set of validated positive coordinates and stored in Geo-
JSON format. 
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Results

Here we present results from the pilot tests and 
from the second iteration of the modeling procedure. 
Results from the first run are included as an appendix.

 
Pilot tests

First, we report model performance from the 
initial pilot tests of ResNet18 and Inception V3 CNN 
frameworks, on the 20% of images reserved for testing 
in each test (table 2).

Image-level model decisions
In a classification procedure, the optimal classifica-

tion threshold may vary as a function of the accuracy 
statistic selected for optimization or of the analyst’s 
tolerance for false-positives or false-negatives. Both of 
these, in turn, depend on the context and objectives 
of the operation. We therefore present the final mod-
el’s performance along a continuum of classification 
thresholds, and at the specific classification threshold 
we selected for this problem. 

The logistic classifier assigned a score of 1 to any 
image with a CAFO probability score above a given 
threshold and a score of 0 to any image with a CAFO 
probability score below the threshold. The model de-
cisions were then compared to the manual class labels 
to estimate recall, precision, and specificity. Figures 5 
and 6 present these metrics at all classification thresh-
olds between 0 and 1 for the second model run, after 
expanding the training set and reparameterizing the 
model. Fig. 5 shows a receiver-operator characteristic 
(ROC) curve, which plots specificity against recall and 
provides an estimate of the tradeoff between true-pos-
itive and true-negative rates at each threshold. Fig. 6 
shows a precision-recall curve, which plots precision 

against recall and offers an estimate of the true-positive 
and false-positive tradeoff at each threshold. A curve 
approximating a 90º angle indicates strong perfor-
mance. For all metrics, performance improves as val-
ues approach 1, and values greater than 0.95 indicate 
very high model skill. 

In the 10-fold CV process, we used a static clas-
sification threshold of 0.5. In the final run, we used 
an optimizer to select the classification threshold that 
maximized the F1 statistic on the training set. F1 can 
be interpreted as the harmonic mean between preci-
sion and recall. Optimizing on this metric achieved a 
suitable balance between the preference for true-pos-
itives and aversion to false-negatives. On the 20% 
reserved test set, the optimal class threshold was 0.544.

The first panel of table 3 reports overall accuracy, 
precision, recall, and F1 as mean values and their stan-
dard deviations aggregated across the 10 folds of the 
CV procedure at threshold=0.500. The second panel 
reports the final metrics on the single run against the 
20% reserved testing set at threshold=0.544. Fig. 6. 
shows the classification decisions for 36 randomly 
selected images from training and testing. 

Facility-level results
The first model iteration produced 894 posi-

tive-classified images. Localizing and deduplicating the 
raw results yielded 565 point coordinates. On manual 
inspection, we found that only 86 points corresponded 
to unique true-positive CAFOs, and we identified an 
additional 64 facilities on the ground, which the model 
had missed. These high false-positive and false-nega-
tive rates suggested both that the model was overfit to 
training data and that training data were insufficiently 

Table 2. Mean and standard deviation of accuracy, precision, recall, and F1 statistics for pilot tests of classification 
strategies based on ResNet18 and Inception V3 CNNs.



Figure 5. 
Receiver-operator 
characteristic 
(ROC) curve plot-
ting specificity 
and recall at all 
possible classifi-
cation thresholds. 
The area under 
the curve is 0.98.

Figure 6. 
Precision-recall 
curve showing 
true-positive/
false-positive 
tradeoffs at all 
possible classifi-
cation thresholds. 
The area under 
the curve is 0.98.

representative of the universe of land-surface features 
that appeared in imagery. 

After enhancing the training set, reparameter-
izing the model, and running a second iteration, we 
found 27 additional positive-classified images beyond 
those already found in the first run. These depicted 13 
unique potential CAFO facilities, although 9 appear 

to be defunct or non-operational. Manual inspection 
confirmed that these comprised 11 new facilities not 
previously identified, along with 14 false-positives, 
which all represented either smaller animal enclosures, 
rodeo facilities, or equestrian facilities. An additional 
20 undetected sites were found in review.
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Table 3. Accuracy, 
precision, recall, and 
F1 statistics for final 
classification on 20% 
test set.

Figure 7. Example class decisions for 36 randomly selected images during testing.
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Discussion & Applications
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Figure 8. Our study found 160 
CAFOs total in New Mexico. Ap-
proximately 9 of these facilities 
are non-operational, as indicat-
ed by gray dots on the map.

In sum, our effort identified 160 distinct cattle 
CAFO facilities across New Mexico, which, by order of 
magnitude, accords with prior best-guess estimates by 
state-level regulators and local advocacy partners. The 
algorithm accurately identified 87.5% of the CAFOs in 
our final dataset. This project built on previous efforts 
to demonstrate the technical feasibility of identifying 
CAFOs from satellite imagery, and created the first 
comprehensive such dataset in the American South-
west. We aim to expand this project and close the data 
gap for the entire United States.

False-positive images generally included cen-
ter-pivot irrigated fields (which co-occurred in some 
CAFO-positive training images), warehouses, highway 
intersections, and airport facilities. Further effort could 
be spent improving the representation of these confus-
able land-surface features in the training data. 

We also examined the environmental justice im-
pact of these CAFOs by comparing CAFO locations to 
New Mexico’s census data from the 2014-2018 Ameri-
can Communities Survey. We found that communities  
with CAFOs are lower income, have lower rates of high 
school graduation, and have higher exposure to PM 
2.5 than the state average. These communities are also 
highly linguistically isolated: the average percentage of 
households without a member who speaks English flu-
ently in communities with CAFOs is 9.58%, compared 
to the state average of 5.68%. These communities are 
more linguistically isolated than 79% of the state.

A major limitation of this analysis is its computa-
tional burden. The full training pipeline required close 
to 12 hours, while applying the model to address the 
final classification problem required nearly three days 
on high-performance computing infrastructure. Far 

more the computational intensivi-
ty lay in pilot testing and iterating. 
These requirements could make 
this kind of analysis out of reach for 
many organizations with small bud-
gets or limited technical capacity. 

Once the pipeline and model-
ing framework was established, the 
actual runtime was tolerable. Equally, 
because of our low-storage approach 
to data ingestion, the modeling is 
relatively low cost and easily scalable. 



Appendix

Table A1. Database schema including fields and data types.
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Figure A1. Equations for model accuracy, precision, recall, specificity, and F1.



Table A1 continued.
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